Функция распределения непрерывной случайной величины имеет вид

Функция распределения непрерывной случайной величины имеет вид

Задание 2. Найти дисперсию случайной величины X , заданной интегральной функцией.

Задание 3. Найти математическое ожидание случайной величины Х заданной функцией распределения.

Задание 4. Плотность вероятности некоторой случайной величины задана следующим образом: f(x) = A/x 4 (x = 1; +∞)
Найти коэффициент A , функцию распределения F(x) , математическое ожидание и дисперсию, а также вероятность того, что случайная величина примет значение в интервале [0,2]. Построить графики f(x) и F(x) .

Задача. Функция распределения некоторой непрерывной случайной величины задана следующим образом:

Определить параметры a и b , найти выражение для плотности вероятности f(x) , математическое ожидание и дисперсию, а также вероятность того, что случайная величина примет значение в интервале [2,3]. Построить графики f(x) и F(x).

  • Решение
  • Видео решение

Случайная величина Х задана плотностью распределения f(x):

Пример №2 . Случайная величина X задана функцией распределения F(x). Найти плотность распределения вероятностей, математическое ожидание и дисперсию случайной величины. Схематично построить графики функций F(x) и f(x).

Ранее мы представили примеры решений задач о дискретной случайной величине, теперь переходим к непрерывной. Формально в задачах требуется найти тоже самое: вычислить числовые характеристики, начертить графики, определить неизвестные параметры, найти вероятности событий.

Но формулы-то совсем другие (в силу непрерывности СВ), поэтому стоит разобраться в них хорошенько. Надеемся, наши примеры вам помогут (а если нет времени, закажите решение).

Ниже вы найдете примеры решений на самые разные законы распределений непрерывных случайных величин: законы $arcsin$ и $arctan$, тригонометрические и логарифмические функции, показательный, равномерный закон распределения, законы Коши, Симпсона, Лапласа и т.д.

Примеры решений

Задача 1. Случайная величина X задана дифференциальной функцией распределения

1) Определить вероятность попадания случайной величины X в интервал $[pi, 5/4 pi]$.
2) Найти математическое ожидание и дисперсию случайной величины X.

Читайте также:  17 Этаж в метрах

Задача 2. Случайная величина X задана плотностью вероятности:

Требуется:
а) найти коэффициент C;
б) найти функцию распределения F(x);
в) найти M(X), D(X), σ(X)
г) найти вероятность P(α -2t при t ≥ 0 и f(t)=0 при t Решебник по теории вероятности онлайн

Больше 11000 решенных и оформленных задач по теории вероятности:

Случайная величина называется непрерывной, если множество ее возможных значений представляет собой некоторый конечный или бесконечный промежуток числовой оси. Например: температура больного в фиксированное время суток, масса наугад выбранной таблетки некоторого препарата, рост наугад выбранного студента и т.д.

Одним из возможных способов задания непрерывной случайной величины является использование с этой целью соотв. функции распределения. Функция F(x), равная вероятности того, что случайная величина Х в результате испытания примет значение , меньше х, называется функцией распределения данной случайной величины :F(x)=P(X х1 следует F(x2)≥F(x1). 3)Функция распределения стремится к 0 при неограниченном убывании еаргумента и стремится к 1 при его неограниченном возрастании.

График функции распределения

11.Плотность распределения вероятностей непрерывной случайной величины и ее свойства. Основные числовые характеристики непрерывной случайной величины.

Плотностью распределения вероятностей (плотностью вероятности) f(x) непрерывной случайной величины Х называется производная функции распределения F(x) этой величины: f(x)=F’(x)

Свойства плотности распределения вероятностей: 1) Плотность вероятности является неотрицательной функцией: f(x)≥0; 2) Вероятность того, что в результате испытания непрерывная случайная величина примет какие либо значения из интервала (a,b) равна: 3) Определенный интеграл в пределах от –бесконечности до + бесконечности от плотности вероятности непрерывной случайной величины равен единице : 4)Определенный интеграл в пределах от минус бесконечности до х от плотности вероятности непрерывной случайной величины равен функции распределения этой величины:

Под основными числовыми характеристиками непрерывной случайной величины понимают, математическое ожидание, дисперсию и среднее квадратическое отклонение.

Читайте также:  Проверка серийного номера apple macbook

Математическое ожидание непрерывной случайной величины:

Среднее квадратическое отклонение: σ(х)= √D(X)

12. Нормальный закон распределения. Вероятность попадения нормально распределенной случайнойвеличиныв заданный интервал.Правило трех сигм.

Из всех видов распределения непрерывных случайных величин наиболее часто используют нормальное распределение, которое задается законом Гаусса. Так, если мы имеем сумму большого числа независимых величин, подчиненных каким угодно законам распределения, то при некоторых общих условиях она будет приближенно подчиняться нормальному закону. Непрерывная случайная величина называется распределенной по нормальному закону, если ее плотность вероятности имеет вид : (увеличить,дописать), где М-математическое ожидание, σ в квадрате – дисперсия, σ-среднее квадратическое отклонение этой величины.это кривая Гаусса:

Подставив выражение для плотности вероятности нормально распределенной случайной величины в выражение , получим вероятность того, что в результате испытания нормально распределенная случайная величина

Ссылка на основную публикацию
Adblock detector