Функция обращается в нуль

Функция обращается в нуль

Нуль функции в математике — элемент из области определения функции, в котором она принимает нулевое значение. Например, для функции f <displaystyle f> , заданной формулой

f ( x ) = x 2 − 6 x + 9 . <displaystyle f(x)=x^<2>-6x+9,.>

f ( 3 ) = 3 2 − 6 ⋅ 3 + 9 = 0 <displaystyle f(3)=3^<2>-6cdot 3+9=0> .

Понятие нулей функции можно рассматривать для любых функций, область значений которых содержит нуль или нулевой элемент соответствующей алгебраической структуры.

Для функции действительного переменного f : R → R <displaystyle f:mathbb o mathbb > нулями являются значения, в которых график функции пересекает ось абсцисс.

Нахождение нулей функции часто требует использования численных методов (к примеру, метод Ньютона, градиентные методы).

Одной из нерешённых математических проблем является нахождение нулей дзета-функции Римана.

Корень многочлена [ править | править код ]

Основная теорема алгебры утверждает, что каждый многочлен степени n имеет n комплексных корней, учитывая их кратность. Комплексные корни всегда входят сопряжёнными парами. Каждый многочлен нечётной степени имеет по крайней мере один действительный корень. Связь между корнями многочлена и его коэффициентами устанавливает теорема Виета.

Комплексный анализ [ править | править код ]

Простой нуль аналитической в некоторой области G ⊂ C <displaystyle Gsubset mathbb > функции f <displaystyle f> — точка z 0 ∈ G <displaystyle z_<0>in G> , в некоторой окрестности которой справедливо представление f ( z ) = ( z − z 0 ) g ( z ) <displaystyle f(z)=(z-z_<0>)g(z)> , где g <displaystyle g> аналитична в z 0 <displaystyle z_<0>> и не обращается в этой точке в нуль.

Нуль порядка k <displaystyle k> аналитической в некоторой области G ⊂ C <displaystyle Gsubset mathbb > функции f <displaystyle f> — точка z 0 ∈ G <displaystyle z_<0>in G> , в некоторой окрестности которой справедливо представление f ( z ) = ( z − z 0 ) k g ( z ) <displaystyle f(z)=(z-z_<0>)^g(z)> , где g <displaystyle g> аналитична в z 0 <displaystyle z_<0>> и не обращается в этой точке в нуль.

Нули аналитической функции изолированы.

Другие специфические свойства нулей комплексных функций выражаются в различных теоремах:

Универсальный русско-английский словарь . Академик.ру . 2011 .

Смотреть что такое "функция обращается в нуль" в других словарях:

Функция Грина — используется для решения неоднородных дифференциальных уравнений с граничными условиями (неоднородная краевая задача). Функция Грина это обратный оператор к . Поэтому ее нередко символически обозначают как . Функции Грина полезны в… … Википедия

Читайте также:  Как перепрошить модем йота под все симки

Нуль функции — точка, где заданная функция f (z) обращается в нуль; таким образом, Н. ф. f (z) это то же самое, что и корни уравнения f (z) = 0. Например, точки 0, π, π, 2π, 2π. суть нули функции sinz. Нули аналитической функции (См. Аналитические… … Большая советская энциклопедия

Функция Лагранжа — Метод множителей Лагранжа, метод нахождения условного экстремума функции f(x), где , относительно m ограничений , i меняется от единицы до m. Содержание 1 Описание метода … Википедия

Функция — (мат.). В ст. Дифференциальное исчисление уже объяснено, что такое Ф. и какие Ф. называются явными и неявными, однозначными и многозначными. В ст. Трансцендентные функции дано определение этих Ф. и указано их отличие от алгебраических Ф. К… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Непрерывная функция — Эта статья о непрерывной числовой функции. О непрерывных отображениях в различных разделах математики см. непрерывное отображение. Непрерывная функция функция без «скачков», то есть такая, у которой малые изменения… … Википедия

Непрерывная функция — Функция, получающая бесконечно малые приращения при бесконечно малых приращениях аргумента. Однозначная функция f (x) называется непрерывной при значении аргумента x0, если для всех значений аргумента х, отличающихся достаточно мало от x0 … Большая советская энциклопедия

Голоморфная функция — функция f(х) комплексного переменного х называется Г., если она не обращается в бесконечность ни при каких конечных значениях независимого переменного х. Простейшая функция, обладающая таким свойством, есть функция целая Ахn + Вхn 1 + Схn 2 + … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

ГРИНА ФУНКЦИЯ — функция, связанная с интегральным представлением решений краевых задач для дифференциальных уравнений. Г. ф. краевой задачи для линейного дифференциального уравнения фундаментальное решение уравнения, удовлетворяющее однородным краевым условиям.… … Математическая энциклопедия

Читайте также:  Kingo root как пользоваться на компьютере

ЦЕЛАЯ ФУНКЦИЯ — функция, аналитическая но всей плоскости комплексного переменного (кроме, возможно, бесконечно удаленной точки). Она разлагается в степенной ряд сходящийся во всей плоскости Если всюду, то f(z)=eP(z), где Р(z) Ц … Математическая энциклопедия

Монотонная функция — (от греч. monótonos однотонный) функция, приращения которой Δf(x) = f(x’) f(x) при Δx = x’ x > 0 не меняют знака, т. е. либо всегда неотрицательны, либо всегда неположительны. Выражаясь не совсем точно, М. ф. это функции, меняющиеся в… … Большая советская энциклопедия

Голоморфная функция — осуществляет конформное отображение, преобразуя ортогональную сетку в ортогональную (там где комплексная производная не обращается в нуль). Голоморфная функция, также называемая регулярно … Википедия

Необходимое и достаточное условия нуля порядка n

Порядок нуля произведения анал. функций Пусть функция f (z) является аналитической в точке z0. Точка z0 называется нулем функции f (z), если ее значение в этой точке равно нулю, т. е. f (z0) = 0. В разложении функции в ряд Тейлора в окрестности нуля этой функции (т. z0) отсутствует свободный член: С0 = f(z0) = 0. Если при этом в разложении отсутствуют и слагаемые, содержащие степени разности (z-z0) до n-ой степени, т. е. разложение имеет вид: или то точка z0 называется нулем порядка n функции f(z). Нуль первого порядка (n = 1) называется простым нулем. Следующие условия являются необходимым и достаточным условиями нуля порядка n функции f (z) в точке z0: a). b). представление функции в виде произведения: Порядок нуля в точке z0 функции, полученной в результате перемножения аналитических функций f (z) = f1(z) f2(z) равен сумме порядков нуля (n1 + n2) в этой точке функций сомножителей ( n1 — порядок нуля в точке z0 функции f1(z), n2 — порядок нуля в точке z0 функции f2(z) ). ПРИМЕР 1. Определить порядок нуля в точке для функции f(z). ПРИМЕР 2. Найти нули функции f(z) и определить их порядок. ПРИМЕР 3. Найти нули функции f(z) и определить их порядок. ПРИМЕР 4. Определить порядок нуля в точке для функции f(z).

Ссылка на основную публикацию
Adblock detector