Ферритовое кольцо на схеме

Ферритовое кольцо на схеме

Ферри́товый фильтр — пассивный электрический компонент, изготовленный из феррита в виде кольца, использующийся в качестве фильтра, для подавления высокочастотных помех в электрических цепях. Ферритовое кольцо увеличивает индуктивность проходящего через него участка провода в несколько сотен (вплоть до тысяч) раз, что и обеспечивает подавление помех высокой частоты [ источник не указан 3224 дня ] . Чаще всего имеют форму цилиндров или параллелепипедов; могут быть съёмными с защелками или несъемными литыми. Ферритовые фильтры используются как дополнительные внешние фильтры, как правило, для устройств, имеющих длинные соединительные кабели.

Содержание

Описание [ править | править код ]

Ферритовый фильтр — один из самых простых и дешёвых типов интерференционных фильтров для установки на уже существующие провода. Для обычного ферритового кольца провод либо продевается через кольцо (образуя одновитковую катушку индуктивности), либо образует многовитковую тороидальную обмотку, что увеличивает индуктивность и, соответственно эффективность помехоподавления. Также используются разборные фильтры на защёлках, которые можно просто надеть на кабель.

Такие фильтры используются двумя различными способами, хотя внешне это выглядит одинаково, и часто можно увидеть использование одинаковых марок ферритов:

  • Фильтр, установленный на одиночный (одножильный, однофазный) провод. В этом случае, в зависимости от марки феррита и интересующего частотного диапазона заграждения, он работает как:
  • Индуктивность. Часть мощности ВЧ-волны отражается обратно в кабель.
  • Поглотитель. Часть мощности ВЧ-волны рассеивается в феррите, что более предпочтительно.
  • Смешанный режим.
  • Фильтр, установленный на многожильный кабель, такой как кабель передачи данных, шнур питания, или интерфейс: USB, видео, и др. В таком случае феррит создаёт на данном участке кабеля синфазный трансформатор, который, пропуская противофазные сигналы (несущие полезную информацию), отражает (не пропускает) синфазные помехи. В этом случае не следует использовать поглощающий феррит во избежание нарушения передачи данных, и желательно применение более высокочастотных ферроматериалов.
  • Применение [ править | править код ]

    Ферритовые фильтры используются как на сигнальных проводах для ослабления внешних помех, так и на проводах питания для уменьшения создаваемых ими помех.

    Раскрытый ферритовый цилиндр надевается на кабель, который необходимо защитить от электромагнитных помех и наводок, примерно в 3 см от наконечника кабеля. Обе ферритовые части смыкаются, после этого замки на пластмассовой оболочке защелкиваются. Для надежности можно оснастить ферритовым цилиндром и другой конец кабеля.

    Фильтры применяют в монтаже охранной сигнализации, когда приёмно-контрольные приборы (ППКОП) создают наводки в шлейфах при передаче сигнала [1] .

    С ферритовыми кольцами дел раньше почти не имел, какие могут быть дела с безликими компонентами. Нет на них маркировки, не встречал. Основной источник их появления "разбор". Впрочем, один раз купил, когда собирал тестер транзисторов, был нужен по схеме. Покупал — в магазине подали такое же безликое изделие как и лежащие дома, покупка не впечатлила. Доверие конечно вещь необходимое и заверения продавца были приняты, но собранное на этом кольце устройство не заработало. Больше не покупаю. На сегодняшний день точно знаю, что колечко от лампочки "энергосберегайки" точно работоспособно в низковольтных преобразователях. А как быть с прочими — мотать на удачу? Пару раз пробовал, не выгорело, так что теперь по мне уж лучше выбросить. Однако необходимость заставила кое-чему научиться, пусть данный метод определения дает параметры магнитной проницаемости только для «прикидки» возможного применения интересующего ферритового кольца, тем не менее, это уже информация.

    Читайте также:  Телефон за 3000 рублей фото

    На предмет теста выбрано шесть ферритовых колец с намерением отобрать те из них, которые можно попробовать применить в низковольтных повышающих преобразователях напряжения. Необходимо следующее: каждое ферритовое колечко измерить штангенциркулем, наружный и внутренний диаметр, его высоту (толщину) в мм, затем равномерно намотать на него 10 — 20 витков провода диаметром 0,3 — 0,4 мм и измерить индуктивность в микрогенри (мкГн).

    1. №1 покрыто пластиковой оболочкой (и о чудо! имеет маркировку «G.N.T. 1203»), габариты (D x d x h ) 14,6 х 6,7 х 5,5мм
    2. №2 в зелёной оболочке, 13 х 7,5 х 6,7 мм
    3. №3 в жёлтой оболочке, 13 х 7,5 х 5,3 мм
    4. №4 маленькое в зелёной оболочке, 10 х 5,5 х 5,5 мм
    5. №5 от лампочки «энергосберегайки», 10 х 5 х 5 мм
    6. №6 феррит без оболочки, 9,2 х 5 х 5,2 мм

    На каждое из колец было намотано по 10 витков медного провода в изоляции с диаметром жилы 0,4 мм. Мотать можно таким приспособлением. Индуктивность кольца №1 составила 2,81 мкГн, в №2 и №3 индуктивности обнаружено не было и они «сошли с дистанции».

    Индуктивность кольца №4 оказалась 0,48 мкГн, №5 – 0,47 мкГн, №6 – 0,30 мкГн

    Полученные данные, габаритные размеры и значение индуктивности, были вставлены в калькулятор расчёта магнитной проницаемости ферритовых материалов (дробные числа вводить через точку). Необходимо также указать тип магнитопровода (поставить точку в «окне»), в данном случае это «Тор» и количество фактически намотанных витков провода (W). Нажимаем рассчитать и получаем результат – эффективную магнитную проницаемость.

    • У №1 она равна 34.43792, у №4 – 7.515167

    • Магнитная проницаемость ферритового кольца под №5 – 7.050014, №6 – 4.876385

    Итогом вышеуказанных действий ранее безликие ферритовые кольца, что делать с которыми было совершенно не ясно, получили личную информацию и стали практически годными для дальнейшего использования, ибо соотнося имеющиеся теперь данные с данными проверенных в работе ферритовых колец (то есть образцовыми, коим в данном конкретном случае выступило колечко от лампочки «энергосберегайки») можно подобрать необходимое. Например из подвергнутых испытанию кольцо №4 имеет данные подобные «образцовому» под №5, его смело можно пробовать в повышающем низковольтном преобразователе напряжения (уже начинаю сборку 2,4 — 9 В). Должно заработать и №6. Про №1 ничего пока сказать не могу – подобного «образца» нет.

    Используя данную формулу можно обойтись и без специального программного калькулятора, вполне достаточно будет и обыкновенного. Пробовал.

    Формула расчёта магнитной проницаемости

    Магнитная проницаемость — физическая величина, коэффициент (зависящий от свойств среды), характеризующий связь между магнитной индукцией B и напряжённостью магнитного поля H в веществе. Материал подготовил — Babay iz Barnaula.

    Читайте также:  Сколько стоит самый мощный компьютер в мире

    В нашем быту появилось огромное множество средств вычислительной техники, которая работает на токах высокой частоты. Ведь чем выше частота, тем выше скорость обработки информации.

    Однако, высокочастотные токи накладывают ряд технических ограничений на соединительные кабели для передачи таких сигналов. В первую очередь это связано с побочными электромагнитными излучениями и наводками (ПЭМИН).

    Особо заметно сказываются помехи на длинных проводах – ведь сигнал имеет свойство затухать, а сам кабель выступает как антенна и потому внутри него могут зарождаться паразитные токи. А это губительно сказывается на качестве проходящих через кабель сигналов.

    Простейший способ борьбы с ПЭМИН – увеличить индуктивность.

    Индуктивность – это показатель соотношения величины силы тока, проходящего через контур, и создаваемого им магнитного потока. Если речь идет о прямолинейных проводах, то под индуктивностью подразумевается величина, характеризующая энергию магнитного поля (здесь ток считается постоянной величиной).

    Индуктивность можно увеличить применением специального ферритового кольца. Как выглядят на кабелях ферритовые фильтры, можно посмотреть на фото ниже.

    Ферритовые кольца – это компоненты электрической цепи, которые используются как пассивные элементы для фильтрации высокочастотных помех за счет повышения индуктивности проводника и поглощения помех, превышающих заданный порог.

    Такие свойства ферритовому фильтру придает материал, из которого он изготовлен – феррит.

    Феррит – это общее название соединений на основе оксида железа и оксидов других металлов. Ферриты совмещают в себе свойства ферромагнетиков и полупроводников (иногда диэлектриков) и потому используются в качестве сердечников катушек, постоянных магнитов, выступают в качестве поглотителей электромагнитных волн высоких частот и т.д.

    Ферритовые кабельные фильтры с защелкой — принцип работы

    Работа ферритового фильтра напрямую зависит от характеристик материала, из которого он изготовлен. За счет специальных добавок оксидов различных металлов меняются свойства феррита.

    Принципиально различают несколько способов применения ферритовых колец:

    1. На одножильных (однофазных) проводах он может, наоборот, поглощать излучение в определенном диапазоне, преобразуя наводки в тепловую энергию. Таким образом негативные частоты могут поглощаться (отсекаться) ферритовым кольцом.
    2. На одножильных проводах, где он работает как своеобразный усилитель, так как возвращает часть высокочастотного магнитного поля обратно в кабель, что приводит к усилению сигнала в заданном диапазоне.
    3. На многожильных проводах феррит работает как синфазный трансформатор, который пропускает несимметричные сигналы в кабеле (импульсы тока, например, в кабелях передачи данных или в цепях питания постоянным током) и гасит симметричные сигналы (которые потенциально могут вызываться в таких кабелях только электромагнитными наводками).

    Где использовать и как выбрать ферритовый фильтр

    Если говорить о практике применения, то на кабелях питания ферритовые кольца применяются для уменьшения помех, которые могут создать сами кабели, а на сигнальных (передающих данные) ферриты гасят возможные внешние помехи и наводки.

    Ферритовые кабельные фильтры могут быть встроенными (кабель продается уже с ферритовым кольцом) или отдельными (чаще всего это защелкивающиеся вокруг провода модели), которые не требуют каких-либо доработок самого кабеля.

    Читайте также:  Установка оперативной памяти в ноутбук asus

    Провод может вставляться в центр ферритового фильтра (получается одновитковая катушка), а может образовывать вокруг кольца несколько витков (тороидальная обмотка). Последний способ значительно увеличивает эффективность работы фильтра.

    Чтобы подобрать ферритовое кольцо под заданные требования, нужно знать характеристики материала, из которого оно изготовлено и габариты изделия.

    Для примера ниже в таблице обозначены основные характеристики ферритовых фильтров, предлагаемых на рынке.

    Маркировка RF-35М RF-50М RF-70М RF-90М RF-110S RF-110A RF-130S RF-130A
    Импеданс, Ом (для частоты в 50 Мгц) 165 125 95 145 180 180 190 190
    График зависимости импеданса от частоты, на рисунке № 4 5 6 7 3 8 3 3
    Диаметр
    отверстия, мм
    3.5 5 7 9 11 11 13 13
    Размер, мм 25х12 25х13 30х16 35х20 35х20 33х23 39х30 39х30
    Вес, г 6 6.5 12 22 44 40 50 50

    График зависимости частоты и импеданса

    Импеданс – это полное внутреннее сопротивление элемента электрической цепи к переменному (гармоническому) току (сигналу). Измеряется, как и обычное сопротивление, в омах.

    Еще одним немаловажным параметром ферритовых фильтров является их магнитная проницаемость.

    Магнитная проницаемость – это коэффициент, который характеризует связь между магнитной индукцией и напряженностью магнитного поля в веществе.

    Исходя из вышесказанного, для того, чтобы обозначить основные свойства ферритовых фильтров, производители прибегают к следующей маркировке:

    3000HH D * d * h, где:

    1. 3000 – это показатель начальной магнитной проницаемости феррита,
    2. HH – это марка феррита (чаще всего это HH – ферриты общего назначения, или HM – для слабых магнитных полей),
    3. D – наибольший (внешний) диаметр,
    4. d – меньший (внутренний) диаметр,
    5. h – высота тороида.

    Приведем типовые примеры применения ферритов:

    • Марка 100НН может использоваться для кабелей с частотами до 30 МГц,
    • 400НН — с частотами не выше 3,5 МГц,
    • 600НН — с частотами до 1,5 МГц
    • 1000НН — до 400 кГц.

    То есть, к примеру, антенный ферритовый фильтр должен быть марки HH.

    А вот ферритовый фильтр для USB кабеля лучше всего выбрать с маркой HM (для кабелей со слабым магнитным полем).

    Соотношение марок и частот выглядит следующим образом:

    • 1000НМ — используется с кабелями, работающими с частотой не более 1 МГц,
    • 1500НМ — не более 600 кГц,
    • 2000НМ и 3000НМ — не свыше 450 кГц.

    Как наматывать ферритовые кольца

    В большинстве случаев достаточно подобрать правильный ферритовый фильтр и защелкнуть его на кабеле ближе к месту подключения к прибору.

    Схема наматывания витков вокруг ферритового кольца

    Однако, в отдельных случаях, для увеличения импеданса можно сделать кабелем несколько витков вокруг кольца феррита и тогда импеданс будет возрастать кратно квадрату числа витков. То есть с двух витков в 4 раза, а с 3 – уже в 9 раз.

    На практике, конечно, реальный показатель увеличения немного меньше теоретического.

    Для того чтобы после наматывания ферритовое кольцо защелкнулось, необходимо заранее определиться с количеством витков провода и рассчитать внутренний диаметр фильтра, чтобы он закрылся, не передавив кабель.

    Ссылка на основную публикацию
    Adblock detector