Диагональ прямоугольного параллелепипеда равна

Диагональ прямоугольного параллелепипеда равна

  • Как найти диагональ прямоугольного параллелепипеда
  • Как найти диагональ в прямоугольнике
  • Как найти высоту, если известна длина и ширина
  • Знание длины всех сторон параллелограмма.

Метод 2. Допустим, что прямоугольный параллелепипед является кубом. Куб — это такой прямоугольный параллелепипед, у которого каждая грань представлена квадратом. Следовательно, все его стороны равны. Тогда формула для расчеты длины его диагонали будет выражена так:

Теорема. Во всяком параллелепипеде противоположные грани равны и параллельны.

Так, грани (рис.) BB1С1С и AA1D1D параллельны, потому, что две пересекающиеся прямые BB1 и B1С1 одной грани параллельны двум пересекающимся прямым AA1 и A1D1 другой. Эти грани и равны, так как B1С1=A1D1, B1B=A1A (как противоположные стороны параллелограммов) и ∠BB1С1 = ∠AA1D1.

Теорема. Во всяком параллелепипеде все четыре диагонали пересекаются в одной точке и делятся в ней пополам.

Возьмем (рис.) в параллелепипеде какие-нибудь две диагонали, например, AС1 и DB1, и проведем прямые AB1 и DС1.

Так как ребра AD и B1С1 соответственно равны и параллельны ребру BС, то они равны и параллельны между собой.

Вследствие этого фигура ADС1B1 есть параллелограмм, в котором С1A и DB1 — диагонали, а в параллелограмме диагонали пересекаются пополам.

Это доказательство можно повторить о каждых двух диагоналях.

Поэтому диагональ AC1 пересекается с BD1 пополам, диагональ BD1 с A1С пополам.

Таким образом, все диагонали пересекаются пополам и, следовательно, в одной точке.

Теорема. В прямоугольном параллелепипеде квадрат любой диагонали равен сумме квадратов трех его измерений.

Пусть (рис.) AC1 есть какая-нибудь диагональ прямоугольного параллелепипеда.

Проведя AC, получим два треугольника: AC1С и ACB. Оба они прямоугольные:

первый потому, что параллелепипед прямой, и следовательно, ребро СС1 перпендикулярно к основанию,

второй потому, что параллелепипед прямоугольный, значит в основании его лежит прямоугольник.

Из этих треугольников находим:

AC 2 1 = AC 2 + СС 2 1 и AC 2 = AB 2 + BC 2

Следовательно, AC 2 1= AB 2 + BC 2 + СС 2 1 = AB 2 + AD 2 + AA 2 1

Следствие. В прямоугольном параллелепипеде все диагонали равны .

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

Урок: Прямоугольный параллелепипед

Определение параллелепипеда

Поверхность, составленная из двух равных параллелограммов АВСD и А1В1С1D1 и четырех параллелограммов АВВ1А1, ВСС1В1, СDD1С1, DАА1D1, называется параллелепипедом (рис. 1).

Рис. 1 Параллелепипед

То есть: имеем два равных параллелограмма АВСD и А1В1С1D1 (основания), они лежат в параллельных плоскостях так, что боковые ребра АА1, ВВ1, DD1, СС1 параллельны. Таким образом, составленная из параллелограммов поверхность называется параллелепипедом.

Таким образом, поверхность параллелепипеда — это сумма всех параллелограммов, из которых составлен параллелепипед.

Свойства параллелепипеда

1. Противоположные грани параллелепипеда параллельны и равны.

(фигуры равны, то есть их можно совместить наложением)

АВСD = А1В1С1D1 (равные параллелограммы по определению),

2. Диагонали параллелепипеда пересекаются в одной точке и делятся этой точкой пополам.

Диагонали параллелепипеда АС1, В1D, А1С, D1В пересекаются в одной точке О, и каждая диагональ делится этой точкой пополам (рис. 2).

Рис. 2 Диагонали параллелепипеда пересекаются и деляться точкой пересечения пополам.

Прямой параллелепипед

Определение. Параллелепипед называется прямым, если его боковые ребра перпендикулярны основаниям.

Пусть боковое ребро АА1 перпендикулярно основанию (рис. 3). Это означает, что прямая АА1 перпендикулярна прямым АD и АВ, которые лежат в плоскости основания. А, значит, в боковых гранях лежат прямоугольники. А в основаниях лежат произвольные параллелограммы. Обозначим, ∠BAD = φ, угол φ может быть любым.

Рис. 3 Прямой параллелепипед

Итак, прямой параллелепипед — это параллелепипед, в котором боковые ребра перпендикулярны основаниям параллелепипеда.

Прямоугольный параллелепипед

Определение. Параллелепипед называется прямоугольным, если его боковые ребра перпендикулярны к основанию. Основания являются прямоугольниками.

Параллелепипед АВСDА1В1С1D1 – прямоугольный (рис. 4), если:

1. АА1⊥ АВСD (боковое ребро перпендикулярно плоскости основания, то есть параллелепипед прямой).

2. ∠ВАD = 90°, т. е. в основании лежит прямоугольник.

Рис. 4 Прямоугольный параллелепипед

Прямоугольный параллелепипед обладает всеми свойствами произвольного параллелепипеда. Но есть дополнительные свойства, которые выводятся из определения прямоугольного параллелепипеда.

Итак, прямоугольный параллелепипед — это параллелепипед, у которого боковые ребра перпендикулярны основанию. Основание прямоугольного параллелепипеда — прямоугольник.

Читайте также:  Программа для передачи файлов на iphone

Свойства прямоугольного параллелепипеда

1. В прямоугольном параллелепипеде все шесть граней прямоугольники.

2. Боковые ребра перпендикулярны основанию. Значит, все боковые грани прямоугольного параллелепипеда — прямоугольники.

3. Все двугранные углы прямоугольного параллелепипеда прямые.

Рассмотрим, например, двугранный угол прямоугольного параллелепипеда с ребром АВ, т. е. двугранный угол между плоскостями АВВ1 и АВС.

АВ – ребро, точка А1 лежит в одной плоскости – в плоскости АВВ1, а точка D в другой – в плоскости А1В1С1D1. Тогда рассматриваемый двугранный угол можно еще обозначить следующим образом: ∠А1АВD.

Возьмем точку А на ребре АВ. АА1 – перпендикуляр к ребру АВ в плоскости АВВ­1, AD перпендикуляр к ребру АВ в плоскости АВС. Значит, ∠А1АD – линейный угол данного двугранного угла. ∠А1АD = 90°, значит, двугранный угол при ребре АВ равен 90°.

Аналогично доказывается, что любые двугранные углы прямоугольного параллелепипеда прямые.

Теорема

Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений.

Примечание. Длины трех ребер, исходящих из одной вершины прямоугольного параллелепипеда, являются измерениями прямоугольного параллелепипеда. Их иногда называют длина, ширина, высота.

Дано: АВСDА1В1С1D1 – прямоугольный параллелепипед (рис. 5).

Доказать: .

Рис. 5 Прямоугольный параллелепипед

Прямая СС1 перпендикулярна плоскости АВС, а значит, и прямой АС. Значит, треугольник СС1А – прямоугольный. По теореме Пифагора:

Рассмотрим прямоугольный треугольник АВС. По теореме Пифагора:

Но ВС и AD – противоположные стороны прямоугольника. Значит, ВС = AD. Тогда:

Так как Обозначим измерения параллелепипеда АВС как a, b, c (см. рис. 6), тогда АС1 = СА1 = В1D = DВ1 =

Определение. Прямоугольный параллелепипед, у которого все три измерения равны, называется кубом.

Все грани куба – это равные квадраты.

Задача 1 Найти диагональ куба

Найти диагональ куба с ребром 1 (рис. 7).

см.

Ответ: см.

Задача 2

Прямые ВС1 и В1С перпендикулярны как диагонали квадрата ВВ1С1С.

Прямая DC перпендикулярна плоскости ВВ1С1, а значит, и прямой ВС1, которая лежит в этой плоскости.

Имеем, прямая ВС1 перпендикулярна двум пересекающимся прямым В1С и DC плоскости, значит А1В1D. Значит, прямая ВС1 перпендикулярна плоскости А1В1D.

Читайте также:  Суфд ошибка 628 континент ап

Плоскость АВС1 проходит через перпендикуляр ВС1 ко второй плоскости А1В1D, значит, плоскости АВС1 и А1В1D перпендикулярны по признаку, что и требовалось доказать.

Итоги урока по теме "Прямоугольный параллелепипед и его измерения (ребра, основание, площадь, диагональ, поверхность, площадь поверхности)"

Итак, мы познакомились с прямоугольным параллелепипедом и прямым параллелепипедом, рассмотрели его основные свойства. Этой важной геометрической фигуре будет посвящен и следующий урок.

Список литературы по теме "Прямой параллелепипед", "Ребра прямоугольного параллелепипеда", "Основание параллелепипеда", "Поверхность параллелепипеда", "Длина диагонали параллелепипеда"

  1. И. М. Смирнова, В. А. Смирнов. Геометрия. 10-11 класс: учебник для учащихся общеобразовательных учреждений (базовый и профильный уровни) / И. М. Смирнова, В. А. Смирнов. – 5-е изд., испр. и доп. – М.: Мнемозина, 2008. – 288 с.: ил.
  2. Шарыгин И. Ф. Геометрия. 10-11 класс: Учебник для общеобразовательных учебных заведений / Шарыгин И. Ф. – М.: Дрофа, 1999. – 208 с.: ил.
  3. Е. В. Потоскуев, Л. И. Звалич. Геометрия. 10 класс: Учебник для общеобразовательных учреждений с углубленным и профильным изучением математики /Е. В. Потоскуев, Л. И. Звалич. – 6-е изд., стереотип. – М.: Дрофа, 2008. – 233 с.: ил.

Домашнее задание для закрепления темы "Основание параллелепипеда", "Поверхность параллелепипеда", "Основание прямоугольного параллелепипеда", "Вершины параллелепипеда", "Основание прямого параллелепипеда", "Измерения параллелепипеда"

  1. И. М. Смирнова, В. А. Смирнов. Геометрия. 10-11 класс: учебник для учащихся общеобразовательных учреждений (базовый и профильный уровни) / И. М. Смирнова, В. А. Смирнов. – 5-е изд., испр. и доп. – М.: Мнемозина, 2008. – 288 с.: ил.
  2. Задания 8, 14 стр. 68.
  3. Каково взаимное расположение двух смежных граней прямого параллелепипеда? А не смежных?
  4. Найдите угол между диагональю параллелепипеда и его гранями в прямоугольном параллелепипеде с измерениями a, b, c.
  5. Найдите площадь поверхности прямого параллелепипеда АВСDА1В1С1D1, если AB = 5 см, AD = 4 см, AA1 = 7 см, а двугранный угол при ребре AA1 равен 30°.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

Если вы нашли ошибку или неработающую ссылку, пожалуйста, сообщите нам – сделайте свой вклад в развитие проекта.

Ссылка на основную публикацию
Adblock detector