Что показывает напряжение на участке цепи

Что показывает напряжение на участке цепи

Участок электрической цепи, по которому проходит ток одного и того же значения называют ветвью .

Место соединения трех и более ветвей называют узлом .

Замкнутую электрическую цепь, образованную одной или несколькими ветвями называют контуром .

Под напряжением на некотором участке электрической цепи понимают разность потенциалов между крайними точками этого участка.

На рис. 2.1 изображен участок цепи, содержащий только резистивный элемент, крайние точки которого обозначены буквами a и b. Пусть ток направлен от точки a к точке b (от более высокого потенциала к более низкому).

Следовательно, потенциал точки а () выше потенциала точки b () на значение, равное произведению тока на сопротивление R:

.

В соответствии с определением напряжение между точками а и b

.

т. е. напряжение на сопротивлении равно произведению тока, протекающего по резистивному элементу, на значение его сопротивления. Последнее выражение называют законом Ома для участка цепи.

В электротехнике разность потенциалов на концах резистивного элемента (сопротивления) называют либо напряжением на сопротивлении, либо падением напряжения. Положительное направление падения напряжения на каком-либо участке (направление отсчета этого напряжения), указываемое на рисунках стрелкой, совпадает с положительным направлением отсчета тока, протекающего по данному сопротивлению.

Рассмотрим вопрос о напряжении на участке цепи, содержащем не только резистивный элемент, но и ЭДС. На рис. 2.2 показан участок цепи, в которой существует ток . Найдем разность потенциалов (напряжение) между точками a и c для этих участков. По определению,

.

Выразим потенциал точки а через потенциал точки f. При перемещении от точки f к точке d встречно направлению ЭДС источника Е2 (рис. 2.2) потенциал точки d оказывается ниже (меньше), чем потенциал точки f, на значение ЭДС источника Е2. При перемещении от точки d к точке c согласно направлению ЭДС источника Е1 (рис. 2.2) потенциал точки c оказывается выше (больше), чем потенциал точки d, на значение ЭДС источника Е1. При перемещении от точки c к точке b и далее к точке a потенциал точки a оказывается выше (больше) на величину падения напряжения на резисторах R2 и R1, соответственно, т.е.

.

Таким образом с учетом вышеизложенного:

,

напряжение на участке цепи между точками a и f равно:

В общем случае напряжение на участке цепи равно сумме падений напряжения на резистивных элементах цепи и сумме ЭДС источников.

Положительное направление напряжения показывают стрелкой от а к f. Согласно определению , поэтому т.е. изменение чередования (последовательности) индексов равносильно изменению знака этого напряжения.

Законы Кирхгофа

Первый закон Кирхгофа (уравнение электрического состояния для узла) можно сформулировать двояко:

1) алгебраическая сумма токов, входящих в любой узел схемы (рис.2.3,а), равна нулю:

2) сумма токов, входящих в любой узел схемы (рис.2.3,б), равна сумме токов выходящих из этого узла:

Физически первый закон Кирхгофа означает, что движение зарядов в цепи происходит так, что ни в одном из узлов они не скапливаются.

Второй закон Кирхгофа (уравнение электрического состояния контура) также можно сформулировать двояко:

1) алгебраическая сумма падений напряжения в любом замкнутом контуре равна алгебраической сумме ЭДС вдоль того же контура:

(в каждую из сумм соответствующие слагаемые входят со знаком плюс, если они совпадают с направлением обхода контура, и со знаком минус, если они не совпадают с ним);

2) алгебраическая сумма напряжений (не падений напряжения!) вдоль любого замкнутого контура равна нулю:

Напряжения участков цепи включают и падения напряжения на резистивных элементах и напряжения на источниках ЭДС.

Для левого контура схемы рис.2.4

.

Законы Кирхгофа справедливы для линейных и нелинейных цепей при любом характере изменения во времени токов и напряжений.

Параллельное и последовательное соединение двухполюсников

Последовательное соединение резистивных элементов

Результирующее падение напряжения на цепи (рис. 2.5) из n последовательно включенных резистивных элементов:

.

В цепи существует общий ток .

Читайте также:  Блокировщик рекламы для chrome на андроид

Для линейных резистивных элементов:

,

где эквивалентное сопротивление цепи из n последовательно соединенных резистивных элементов:

.

Для нелинейных резистивных элементов НЭ1 и НЭ2 результирующая ВАХ эквивалентного резистивного элемента определяется графическим способом (рис. 2.6).

В интересующем диапазоне токов (соответствующем участку ВАХ нелинейного элемента) задаются несколькими значениями токов (). Для каждого из выбранных значений тока, например , определяют результирующее напряжение на последовательно включенных элементах:

.

На уровне каждой из ординат откладывают найденные значения абсцисс . Результирующую ВАХ получают, проводя линию через найденные точки.

Параллельное соединение резистивных элементов

При параллельном соединении двухполюсных элементов (рис. 2.7) на их полюсах будет общее падение напряжения .

Общий ток , для n параллельно включенных двухполюсных элементов

.

Для линейных двухполюсных элементов ток через k-тый резистивный элемент , где – проводимость k-того резистивного элемента. Таким образом общий ток

,

где эквивалентная проводимость равна сумме проводимости параллельно включенных двухполюсных элементов.

В частном случае для двух элементов эквивалентная проводимость , или эквивалентное сопротивление

.

Для нелинейных резистивных элементов НЭ1 и НЭ2 результирующая ВАХ эквивалентного резистивного элемента определяется графическим способом (рис. 2.8).

В интересующем диапазоне напряжений (соответствующем участку ВАХ нелинейного элемента) задаются несколькими значениями напряжений (). Для каждого из выбранных значений напряжения, например , определяют результирующий (суммарный) ток через параллельно включенные элементы:

.

На уровне каждой из абсцисс откладывают найденные значения ординат . Результирующую ВАХ получают проводя линию через найденные точки.

Последовательное и параллельное соединение линейных индуктивных элементов

При последовательном соединении n линейных индуктивных элементов их результирующая индуктивность определяется

.

При параллельном соединении n линейных индуктивных элементов их результирующая индуктивность определяется

, или .

Последовательное и параллельное соединение линейных емкостных элементов

При последовательном соединении n линейных емкостных элементов их результирующая емкость определяется

, или .

При параллельном соединении n линейных емкостных элементов их результирующая емкость определяется

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Учись учиться, не учась! 10638 — | 8009 — или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Участок электрической цепи, по которому проходит ток одного и того же значения называют ветвью .

Место соединения трех и более ветвей называют узлом .

Замкнутую электрическую цепь, образованную одной или несколькими ветвями называют контуром .

Под напряжением на некотором участке электрической цепи понимают разность потенциалов между крайними точками этого участка.

На рис. 2.1 изображен участок цепи, содержащий только резистивный элемент, крайние точки которого обозначены буквами a и b. Пусть ток направлен от точки a к точке b (от более высокого потенциала к более низкому).

Следовательно, потенциал точки а () выше потенциала точки b () на значение, равное произведению тока на сопротивление R:

.

В соответствии с определением напряжение между точками а и b

.

т. е. напряжение на сопротивлении равно произведению тока, протекающего по резистивному элементу, на значение его сопротивления. Последнее выражение называют законом Ома для участка цепи.

В электротехнике разность потенциалов на концах резистивного элемента (сопротивления) называют либо напряжением на сопротивлении, либо падением напряжения. Положительное направление падения напряжения на каком-либо участке (направление отсчета этого напряжения), указываемое на рисунках стрелкой, совпадает с положительным направлением отсчета тока, протекающего по данному сопротивлению.

Рассмотрим вопрос о напряжении на участке цепи, содержащем не только резистивный элемент, но и ЭДС. На рис. 2.2 показан участок цепи, в которой существует ток . Найдем разность потенциалов (напряжение) между точками a и c для этих участков. По определению,

.

Выразим потенциал точки а через потенциал точки f. При перемещении от точки f к точке d встречно направлению ЭДС источника Е2 (рис. 2.2) потенциал точки d оказывается ниже (меньше), чем потенциал точки f, на значение ЭДС источника Е2. При перемещении от точки d к точке c согласно направлению ЭДС источника Е1 (рис. 2.2) потенциал точки c оказывается выше (больше), чем потенциал точки d, на значение ЭДС источника Е1. При перемещении от точки c к точке b и далее к точке a потенциал точки a оказывается выше (больше) на величину падения напряжения на резисторах R2 и R1, соответственно, т.е.

Читайте также:  Прекращена работа программы x ray

.

Таким образом с учетом вышеизложенного:

,

напряжение на участке цепи между точками a и f равно:

В общем случае напряжение на участке цепи равно сумме падений напряжения на резистивных элементах цепи и сумме ЭДС источников.

Положительное направление напряжения показывают стрелкой от а к f. Согласно определению , поэтому т.е. изменение чередования (последовательности) индексов равносильно изменению знака этого напряжения.

Законы Кирхгофа

Первый закон Кирхгофа (уравнение электрического состояния для узла) можно сформулировать двояко:

1) алгебраическая сумма токов, входящих в любой узел схемы (рис.2.3,а), равна нулю:

2) сумма токов, входящих в любой узел схемы (рис.2.3,б), равна сумме токов выходящих из этого узла:

Физически первый закон Кирхгофа означает, что движение зарядов в цепи происходит так, что ни в одном из узлов они не скапливаются.

Второй закон Кирхгофа (уравнение электрического состояния контура) также можно сформулировать двояко:

1) алгебраическая сумма падений напряжения в любом замкнутом контуре равна алгебраической сумме ЭДС вдоль того же контура:

(в каждую из сумм соответствующие слагаемые входят со знаком плюс, если они совпадают с направлением обхода контура, и со знаком минус, если они не совпадают с ним);

2) алгебраическая сумма напряжений (не падений напряжения!) вдоль любого замкнутого контура равна нулю:

Напряжения участков цепи включают и падения напряжения на резистивных элементах и напряжения на источниках ЭДС.

Для левого контура схемы рис.2.4

.

Законы Кирхгофа справедливы для линейных и нелинейных цепей при любом характере изменения во времени токов и напряжений.

Параллельное и последовательное соединение двухполюсников

Последовательное соединение резистивных элементов

Результирующее падение напряжения на цепи (рис. 2.5) из n последовательно включенных резистивных элементов:

.

В цепи существует общий ток .

Для линейных резистивных элементов:

,

где эквивалентное сопротивление цепи из n последовательно соединенных резистивных элементов:

.

Для нелинейных резистивных элементов НЭ1 и НЭ2 результирующая ВАХ эквивалентного резистивного элемента определяется графическим способом (рис. 2.6).

В интересующем диапазоне токов (соответствующем участку ВАХ нелинейного элемента) задаются несколькими значениями токов (). Для каждого из выбранных значений тока, например , определяют результирующее напряжение на последовательно включенных элементах:

.

На уровне каждой из ординат откладывают найденные значения абсцисс . Результирующую ВАХ получают, проводя линию через найденные точки.

Параллельное соединение резистивных элементов

При параллельном соединении двухполюсных элементов (рис. 2.7) на их полюсах будет общее падение напряжения .

Общий ток , для n параллельно включенных двухполюсных элементов

.

Для линейных двухполюсных элементов ток через k-тый резистивный элемент , где – проводимость k-того резистивного элемента. Таким образом общий ток

,

где эквивалентная проводимость равна сумме проводимости параллельно включенных двухполюсных элементов.

В частном случае для двух элементов эквивалентная проводимость , или эквивалентное сопротивление

.

Для нелинейных резистивных элементов НЭ1 и НЭ2 результирующая ВАХ эквивалентного резистивного элемента определяется графическим способом (рис. 2.8).

В интересующем диапазоне напряжений (соответствующем участку ВАХ нелинейного элемента) задаются несколькими значениями напряжений (). Для каждого из выбранных значений напряжения, например , определяют результирующий (суммарный) ток через параллельно включенные элементы:

.

На уровне каждой из абсцисс откладывают найденные значения ординат . Результирующую ВАХ получают проводя линию через найденные точки.

Последовательное и параллельное соединение линейных индуктивных элементов

При последовательном соединении n линейных индуктивных элементов их результирующая индуктивность определяется

.

При параллельном соединении n линейных индуктивных элементов их результирующая индуктивность определяется

Читайте также:  Почему не видит загрузочную флешку в биосе

, или .

Последовательное и параллельное соединение линейных емкостных элементов

При последовательном соединении n линейных емкостных элементов их результирующая емкость определяется

, или .

При параллельном соединении n линейных емкостных элементов их результирующая емкость определяется

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Только сон приблежает студента к концу лекции. А чужой храп его отдаляет. 8959 — | 7623 — или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Главная // .. // § 2.4. Напряжение на участке цепи

§ 2.4.Напряжение на участке цепи. Под, напряжением на некотором участке электрической цепи понимают разность потенциалов между крайними точками этого участка.

На рис. 2.5 изображен участок цепи, крайние точки которого обозначены буквами а и b. Пусть ток I течет от точки а к точке b (от более высокого потенциала к более низкому). Следовательно, потенциал точки а(φa) выше потенциала точки b(φb) на значение, равное произведению тока I на сопротивление R: φa = φb + IR.

В соответствии с определением напряжение между точками а и b Uab = φa — φb.

Cледовательно, Uab = IR, т. е. напряжение на сопротивлении равно произведению тока, протекающего по сопротивлению, на значение этого сопротивления.

В электротехнике разность потенциалов на концах сопротивления называют либо напряжением на сопротивлении, либо падением напряжения. В дальнейшем разность потенциалов на концах сопротивления, т. е. произведение IR, будем именовать падением напряжения.

Положительное направление падения напряжения на каком-либо участке (направление отсчета этого напряжения), указываемое на рисунках стрелкой, совпадает с положительным направлением отсчета тока, протекающего по данному сопротивлению.

В свою очередь, положительное направление отсчета тока I (ток — это скаляр алгебраического характера) совпадает с положительным направлением нормали к поперечному сечению проводника при вычислении тока по формуле , где δ — плотность тока; — элемент площади поперечного сечения (подробнее см. § 20.1).

CMM-10 Мультиметр цифровой

  • измерение напряжения постоянного и переменного тока до 600 В;
  • измерение силы постоянного и переменного тока до 10 А;
  • измерение электрического сопротивления до 40 МОм;
  • измерение электрической емкости до 100 мкФ;
  • измерение частоты переменного тока и коэффициента заполнения;
  • измерение температуры (термопара, тип К);
  • контроль целостности цепи;
  • тестирование диодов.

Рассмотрим вопрос о напряжении на участке цепи, содержащем не только сопротивление, но и ЭДС.

На рис. 2.6, а, б показаны участки некоторых цепей, по которым протекает ток I. Найдем разность потенциалов (напряжение) между точками а и с для этих участков. По определению,

Выразим потенциал точки а через потенциал точки с. При перемещении от точки с к точке b встречно направлению ЭДС E(рис. 2.6, а) потенциал точки b оказывается ниже (меньше), чем потенциал точки с, на значение ЭДС Е: φb = φc — Е. При перемещении от точки с к точке b согласно направлению ЭДС E(рис. 2.6, б) потенциал точки b оказывается выше (больше), чем потенциал точки с, на значение ЭДС Е: φb = φc + Е.

Так как по участку цепи без источника ЭДС ток течет от более высокого потенциала к более низкому, в обеих схемах рис. 2.6 потенциал точки а выше потенциала точки b на значение падения напряжения на сопротивлении R: φa = φb + IR. Таким образом, для рис. 2.6, а

Положительное направление напряжения Uac показывают стрелкой от а к с. Согласно определению, Uca = φc — φa, поэтому Uca = — Uac,т. е. изменение чередования (последовательности) индексов равносильно изменению знака этого напряжения. Следовательно, напряжение может быть и положительной, и отрицательной величиной.

Ссылка на основную публикацию
Adblock detector