1920X1080 30 кадр сек

1920X1080 30 кадр сек

Ка́дровая частота́, частота́ кадросме́н (англ. Frames per Second (FPS), Frame rate, Frame frequency ) — количество сменяемых кадров за единицу времени в компьютерных играх, телевидении и кинематографе. Понятие впервые использовано фотографом Эдвардом Майбриджем, осуществлявшим эксперименты по хронофотографической съёмке движущихся объектов несколькими фотоаппаратами последовательно [1] . Общепринятая единица измерения — кадры в секунду.

Содержание

Кинематограф [ править | править код ]

В кинематографе используется постоянная частота кадров, не изменяющаяся на протяжении всего фильма и соответствующая определённому стандарту. Для немого кинематографа частота киносъёмки и кинопроекции была выбрана Люмьером в 1896 году и составляла 16 кадров в секунду [2] . Расход 35-мм киноплёнки при этом составлял ровно 1 фут в секунду, облегчая расчёты. Во времена немого кинематографа кинопроекторы оснащались примитивными стабилизаторами скорости, и проекция фильма часто происходила с частотой, превышающей частоту съёмки [3] . Эта частота выбиралась киномехаником самостоятельно, исходя из «темперамента» публики [4] . Роль человека, вращавшего ручку кинопроектора на заре кинематографа считалась не менее важной, чем роль создателей фильма: подбор темпа проекции также считался искусством [5] . Для более спокойных зрителей выбиралась скорость 18—24 кадров в секунду, а для «живой» публики фильм ускорялся до 20—30 кадров в секунду. После окончания Первой Мировой войны в европейских кинотеатрах наметилась тенденция показа фильмов с увеличенной частотой. Это объяснялось коммерческими соображениями кинопрокатчиков, стремившихся укоротить киносеансы и увеличить их количество. В некоторых случаях демонстрация происходила со скоростью более 50 кадров в секунду, совершенно искажая движение на экране. В Германии даже было выпущено специальное постановление полиции о недопустимости повышения частоты проекции выше стандартной [4] .

С появлением звукового кино, стандартом стала частота 24 кадра в секунду, чтобы повысить скорость непрерывного движения киноплёнки для получения необходимого частотного диапазона оптической фонограммы [6] [7] . Частота 24 кадра в секунду стандартизирована консорциумом американских кинокомпаний в 1926 году для новых систем звукового кинематографа: «Вайтафон» «Фокс Мувитон» и RCA Photophone. 15 марта 1932 года Американская Академия киноискусства окончательно узаконила этот параметр, утвердив классический формат в качестве отраслевого стандарта [8] . Частоты немой и звуковой киносъёмки выбраны как технический компромисс между необходимой плавностью движения на экране, разумным расходом киноплёнки и динамическими характеристиками механизмов киноаппаратуры [9] . Скорости движения киноплёнки определяют долговечность фильмокопии, наиболее приемлемую при частоте 24 кадра в секунду. Для замедления или ускорения движения на экране существует ускоренная (рапид) и замедленная или покадровая (цейтраферная) съёмки. Киносъёмка с частотой смены кадров, отличной от стандартной, позволяет наблюдать на экране процессы, невидимые глазом или привносит в кинофильм дополнительный художественный эффект.

В отличие от телевидения, кадровые частоты которого различаются в разных странах, в звуковом кинематографе частота 24 кадра в секунду является общемировым стандартом [10] . Для некоторых телевизионных стандартов это вынуждает применять интерполяцию частоты при телекинопроекции. Главная причина неизменяемости стандарта частоты съёмки и проекции в кинематографе заключается в огромных технологических трудностях её изменения на киноплёнке при печати в разных форматах для различных киносетей. Всё многообразие кинематографических систем основано на общем стандарте частоты, поскольку это единственный параметр, не поддающийся трансформации при оптическом переводе из одной системы в другую. Попытки некоторых разработчиков изменить общепринятую частоту в 24 кадра на 30, чтобы повысить частоту мельканий выше критической для широкого экрана, не увенчались успехом, и кинематографический формат Todd-AO, первоначально рассчитанный на такую частоту съёмки и проекции, был вскоре приведен к общему стандарту [11] . Частота киносъёмки и проекции панорамных киносистем, первоначально составлявшая 26 кадров в секунду, в последних кинопостановках в этих форматах приведена к общемировому. Возможность перевода стандартов появилась только с отказом от киноплёнки и развитием цифровых технологий кинопроизводства.

Не имели успеха некоторые форматы, рассчитанные на частоту в 48 и 60 кадров в секунду из-за большого расхода киноплёнки и технологических трудностей кинопроекции. Единственное исключение — некоторые стандарты 3D-кинопроекции, в которых используется удвоенная частота 48 кадров в секунду для проекции стереопары. При этом, для каждого глаза частота остается привычной — 24 кадра в секунду. В цифровом кинематографе частота кадров также принята во всем мире равной 24, как наиболее соответствующая эстетике профессионального художественного кино и не требующая неприемлемых объёмов данных. Дробная частота 23,976 кадров в секунду является нестандартной и используется при телекинопроекции для интерполяции в американские стандарты телевидения с частотой 29,97 или 59,94 кадров в секунду. Все частоты киносъёмки, отличающиеся от 24 кадров в секунду, являются нестандартными и применяются в специальных случаях. Вместе с тем, попытки увеличить частоту съёмки и проекции для усиления эффекта присутствия, начавшиеся практически сразу после появления кинематографа, не прекращаются по сей день.

Частоты киносъёмки и кинопроекции [ править | править код ]

В немом кинематографе частота проекции может не совпадать с частотой съёмки, поскольку в большинстве случаев зрителям не известно, с какой скоростью двигались объекты. Разница может достигать 25, а иногда даже 50 %, не вызывая ощущения неестественности [3] . В звуковом кинематографе совпадение этих частот обязательно из-за недопустимости искажения синхронной фонограммы. Основные стандарты кадровых частот приведены в списке:

  • 16 — стандартная частота съёмки и проекции немого кинематографа;
  • 18 — стандартная частота съёмки и проекции любительского формата «8 Супер»;
  • 23,976 (24×1000÷1001) — частота телекинопроекции в американском стандарте разложения525/60, применяемая для интерполяции без потерь;
  • 24 — общемировой стандарт частоты киносъёмки и проекции звукового кинематографа;
  • 25 — частота киносъёмки, применяемая при производстве телефильмов и телерепортажей для перевода в европейский стандарт разложения 625/50. Также использовалась в советской панорамной киносистеме «Кинопанорама»;
  • 26 — частота съёмки и проекции панорамной киносистемы «Синерама» [12] ;
  • 29,97002616 (30×1000÷1001) — точная кадровая частота цветного телевизионного стандарта NTSC;
  • 30 — частота киносъёмки и проекции раннего варианта широкоформатной киносистемы «Тодд-AO»;
  • 48 — частота съёмки и проекции кинематографических систем «IMAX HD» и «Maxivision 48»;
  • 50 — частота полукадров европейского стандарта разложения. Используется в электронных камерах для ТВЧ;
  • 59,94 (60×1000÷1001) — точная полукадровая частота цветного телевизионного стандарта NTSC и частота кадров некоторых стандартов ТВЧ;
  • 60 — частота киносъёмки в американском стандарте ТВЧ и системе «Шоускан» (англ. Showscan ) [13] .

Телевидение [ править | править код ]

В телевизионных стандартах частота кадров так же, как в кинематографе, выбрана постоянной. Частота смены кадров в телевидении является частью стандарта разложения изображения и при его создании выбиралась исходя из уже существующей частоты смены кадров кинематографа, физиологических критериев, а также была привязана к частоте промышленного переменного тока. Физиологическим пределом заметности мерцания изображения при средних значениях его яркости, считается частота в 48 Гц [14] . В кинематографе для сдвига мерцаний выше физиологического предела с 1902 года применяется холостая лопасть обтюратора кинопроектора, перекрывающая изображение одного неподвижного кадрика вторично [2] [15] . В телевидении для этих же целей при сохранении близкой к кинематографу кадровой частоты применяется чересстрочная развертка. Изображение целого кадра строится дважды — сначала чётными строками, а затем нечётными. Кроме того, кадровая частота телевидения изначально для упрощения конструкции приёмника привязывалась (а именно, в точности соответствовала) к частоте местных электросетей [14] . В частности:

  • Европейский стандарт разложения 625/50 передаёт 50 полукадров в секунду, соответствуя промышленному току с частотой 50 Гц [14] .
  • Американский стандарт 525/60 — 60 полукадров в секунду, совпадая по частоте с электросетями Северной Америки.

При этом, по понятной причине, работоспособными были только телеприёмники, питающиеся от того же первичного генератора, что и передатчик. В дальнейшем, при появлении в телесигнале специальных управляющих синхроимпульсов, равенство кадровой частоты и частоты питающего напряжения стало вредным, оно приводило к появлению медленно плывущих по экрану участков разной яркости и другим проблемам у первых поколений телевизионных приёмников.

Читайте также:  Scions of destiny сервер

С появлением цветного телевидения стандарта NTSC полукадровая частота была изменена с 60 на 59,94 из-за технических особенностей модуляции цветовой поднесущей. Поэтому при телекинопроекции кадровая частота стала кратной — 23,976.

В разных телевизионных стандартах HDTV применяются чересстрочная и прогрессивная (построчная) развертки, поэтому изображение может передаваться как полями, так и целыми кадрами. Но в конечном счете, максимальная частота смены изображений по прежнему равна 50 Гц в Европе и 60 Гц в странах, использующих американскую систему (США, Канада, Япония и т. д.)

Телекинопроекция кинофильмов в американских стандартах разложения, основанных на кадровой частоте 30 Гц (29,97 Гц) происходит с частотой, близкой к стандартной — 23,976 кадра в секунду и последующей интерполяцией 3:2.

В России, при демонстрации старых фильмов снятых на киноплёнку с частотой 24 кадра в секунду, для адаптации их к частоте смены кадров в телевидении их пропускают с частотой в 25 кадров в секунду, при этом фильм ускоряется на 4 процента, что становится заметным по звуковому сопровождению, голоса становятся выше тоном.

Тот же процесс в европейских стандартах, основанных на кадровой частоте 25 Гц, происходит с этой частотой, незначительно ускоряя движение на экране. При этом фильм становится короче на 4 %, а частоты фонограммы повышаются на 0,7067 полутона.

В большинстве систем видеонаблюдения используется существенно пониженная частота кадров, поскольку их главной задачей является не качественная передача движения, а регистрация событий с максимальной длительностью при минимальном объёме информации. В современных стандартах цифровой видеозаписи частота кадров может быть переменной в зависимости от темпа движения и интенсивности потока видеоданных. Переменная кадровая частота используется в некоторых медиаконтейнерах для более эффективного сжатия видео.

Чересстрочная и прогрессивная развёртки [ править | править код ]

В телевидении для обеспечения передачи плавности движения в условиях ограниченной полосы пропускания канала передачи видеосигнала, каждый кадр последовательно передается двумя полями (полукадрами) — чётным и нечётным, что увеличивает частоту кадровой развертки вдвое. Сначала передаются нечётные строки (1, 3, 5, 7 …), затем чётные (2, 4, 6, 8 …). Такая развёртка называется чересстрочной. Исторически в аналоговом телевещании частота чересстрочной развёртки измеряется в полукадрах в секунду.

В компьютерных мониторах и в некоторых стандартах телевидения высокой четкости HDTV применяется построчная развёртка (англ. progressive scan ), когда электронный луч проходит все строки по порядку (1, 2, 3, 4, 5…).

В потоке стандартов DVB и Blu-ray Disc, с разрешением Full HD, стандарты разложения с прогрессивной разверткой не используются в связи с ограничением ёмкости носителей и, соответственно, скорости потока видеоданных, а также с технологической сложностью декодирования. В этих случаях используются различные варианты стандарта 1080i, допускающие кадровые частоты 25 и 30 кадров в секунду с чересстрочной развёрткой [16] .

Кроме того Европейский вещательный союз (EBU) предпочитает обозначать вещательный стандарт комбинацией «разрешение/частота кадров» (не полукадров), разделённые косой чертой. Таким образом формат 1080i60 или 1080i50 обозначается как 1080i/30 и 1080i/25 в зоне действия Европейского вещательного союза, в который входят все страны СНГ.

Чтобы чересстрочное телевизионное изображение оптимально смотрелось на экране компьютера, применяют фильтр деинтерлейсинга (англ. deinterlacing ).

Телевизоры с режимом 100 Гц [ править | править код ]

В телевизорах с диагональю экрана 72 см и выше, оснащённых электронно-лучевой трубкой, при 50 Гц (системы PAL и SÉCAM) при некоторых условиях заметно мерцание изображения вследствие повышенной чувствительности периферийного зрения. Это может приводить к утомлению глаз и даже заболеваниям. Поэтому в телевизионных приёмниках премиум-класса существует режим «100 Гц», при котором производится увеличение частоты кадров в 2 раза путём повторного показа каждого кадра изображения при удвоенной частоте развертки — принцип, сходный с холостой лопастью обтюратора в кинопроекции.

В телевизорах с меньшей диагональю режим «100 Гц», как правило, не используется, поскольку в них мерцание не так заметно. В плазменных, жидкокристаллических и OLED-телевизорах мерцание отсутствует, и речь может идти только о частоте обновления изображения. Поэтому наличие режима «100-герц» применительно к данному классу устройств может носить рекламный характер. [ источник не указан 1667 дней ] Тем не менее, возможность обновления экрана с частотой 120 Гц нужна для того, чтобы можно было без мерцания наблюдать стереоизображение с частотой смены стереокадров 60 Гц через стереоочки с активным затвором.

Плавность движения на экране [ править | править код ]

Видимая на экране плавность движения зависит как от частоты съемки и отображения, так и от других факторов. Выдержка, получаемая киноплёнкой или передающей трубкой (матрицей) в момент съёмки одного кадра, может повлиять на передачу плавности быстрых движений. При очень коротких выдержках, существенно меньших, чем период смены кадров, быстрое движение на экране может восприниматься прерывистым («стробированным») вследствие отсутствия смазанности изображения каждого кадра, скрывающего временну́ю дискретность [17] . Поэтому в кинематографе принято уменьшать угол раскрытия обтюратора только при специальных комбинированных съёмках. Передающие телевизионные трубки, как правило, имеют фиксированное время развертки одного кадра, определяемое движением считывающего электронного луча, и лишены возможности изменения «выдержки», соответствующей длительности полукадра за вычетом кадрового гасящего импульса. Однако современные видеокамеры, оснащенные ПЗС- и КМОП-матрицами, обладают такой возможностью за счет другой технологии считывания изображения. Большинство производителей используют для этой технологии, позволяющей выбирать время считывания кадра, торговое название «электронный обтюратор» (англ. Electronic shutter ). При установке очень короткой выдержки быстрые движения на экране могут восприниматься отчетливо «дробными» вследствие полного отсутствия смаза изображения отдельных кадров и физиологических особенностей зрительного анализатора.

Компьютерные игры [ править | править код ]

В компьютерных играх под кадровой частотой (англ. FPS, Frame Per Second, framerate ) понимается частота, с которой процесс игры обновляет изображение в кадровом буфере. При этом игры можно разделить на два класса: игры с постоянной кадровой частотой и игры с переменной кадровой частотой. Игры с постоянной кадровой частотой выдают на слабых и мощных компьютерах одинаковое количество кадров в секунду. Если ресурсы компьютера невелики и он не справляется с прорисовкой, то замедляется вся игра. Игры с переменной кадровой частотой на слабых компьютерах начинают пропускать кадры, скорость игрового процесса не меняется.

В любом случае, выдаваемая игрой кадровая частота обычно не кратна кадровой частоте монитора, это приводит к рваному изображению. Для борьбы с этим существует режим вертикальной синхронизации (англ. V-Sync ), а также плавающая синхронизация (технологии «AMD FreeSync» и «Nvidia G-Sync»).

Создаваемый трёхмерным движком кадр обычно резкий (в отличие от кадра видео), плюс игрок управляет происходящим в кадре — потому оптимальная кадровая частота в играх обычно больше, чем в кино, и начинается с 30 кадров в секунду.

Плавность движения в кино и на видео [ править | править код ]

Минимальная кадровая частота для создания ощущения плавности движения составляет

12—18 кадров в секунду. Эта цифра установлена экспериментально на заре кинематографа. Эдисон считал необходимой частоту в 30—40 кадров в секунду, однако эта цифра исходила из заметности мельканий при кинопроекции и оказалась завышенной [1] .

Тем не менее, полное устранение «дробления» изображения при быстрых движениях возможно только при использовании частоты съёмки, превышающей критическую частоту заметности мельканий [18] . При частотах, превышающих 48 Гц, изображение становится заметно более плавным и правдоподобным [19] . Это заметно при сравнении на экране телевизора видеозаписи, снятой с большей временно́й дискретностью, и кинофильма. При просмотре видеозаписи (или передачи с телевизионной камеры) зритель видит 50 (или 60) изображений в секунду, каждое из которых отображает отдельную фазу движения, вследствие считывания камерой отдельных полукадров в разные моменты времени. Совсем другая картина наблюдается при просмотре кинофильма, снятого с частотой 24 кадра в секунду. Телевизор, также обладающий чересстрочной разверткой, все равно показывает в секунду только 25 изображений за счет того, что каждый кадрик кинофильма передается дважды: сначала чётным полем, затем нечётным [П 1] . При этом, в отличие от видеозаписи, в которой каждое поле передает отдельную фазу движения, временная дискретность кинофильма вдвое ниже. Поэтому в кинофильмах движение выглядит более обобщенным, чем в видеозаписи. В некоторых профессиональных видеокамерах существует специальный «кинематографический» режим, обеспечивающий понижение временной дискретности изображения, путём одновременного запоминания матрицей четного и нечетного полей изображения с сохранением разрешающей способности, основанной на полном количестве строк в кадре. В результате, оба поля отображают одну и ту же фазу движения, приближая эффект от восприятия изображения к кинематографическому.

Читайте также:  Как пользоваться wo mic через wifi

Повышение плавности передачи движения [ править | править код ]

Существуют разные мнения насчет необходимости повышения временной дискретности кинематографического и телевизионного тракта, и они основываются на различных эстетических позициях [18] . Однако, уже сегодня существуют кинематографические системы, предусматривающие удвоенные против обычных частоты киносъемки и кинопроекции.

Такие зрелища доступны, например в кинотеатрах IMAX с поддержкой IMAX HD, а также в обычных кинозалах, оснащённых проекторами стандарта «Maxivision 48» (48 кадров/сек [20] ).

Существующее съёмочное оборудование в большинстве случаев рассчитано на стандартную частоту. Но оборудование в современных кинотеатрах уже сейчас позволяет воспроизводить фильмы с частотой до 60 кадров в секунду. Первым фильмом, снятым с частотой 48 кадров стал «Хоббит: Нежданное путешествие» [21] [22] . В 2020 году планируется выход фильма «Аватар 2» [23] , который по заявлениям будет иметь частоту не менее, чем в два раза превышающую стандартную 24 кадра в секунду. В 2018 году на 75-ом Венецианском кинофестивале был представлен фильм Виктора Косаковского «Акварель», снятый с частотой 96 кадров в секунду [24] .

В современных телевизорах также есть возможность искусственного увеличения плавности движения путём генерирования — при помощи интерполяции — дополнительных кадров, отображающих промежуточные фазы движения. Процессор телевизора на основе изображения двух соседних кадров вычисляет промежуточный кадр и таким образом увеличивает видимую плавность движения на экране. Качественная интерполяция движений в телевизорах обычно начинается с серии не ниже средней или высокой.

У разных производителей есть собственные наработки (DNM, Motion Plus) создающие промежуточные кадры «на лету». Существуют также программные средства для персонального компьютера, например Smooth V >[25] от Mirilis, позволяющие создавать повышенную плавность. Качество каждого из решений может значительно различаться и требует дополнительных вычислительных ресурсов.

Обратной стороной прогресса стал эффект мыльной оперы, воспринимаемый некоторыми зрителями.

Недавно я приобрел и установил видеорегистратор Mio MiVue 688. Решил поделиться небольшим отчетом о его работе и своими впечатлениями. Не буду вдаваться в подробности, описывать все его функции и особенности, кто заинтересуется — найдет в интернете описание. Помимо основного своего предназначения, он также может предупреждать о камерах, радарах и прочих неожиданностях. Остановлюсь на качестве видео.

Пользоваться им удобно. Меню у него четкое, информативное, мне понравилось:

Сегодня я решил протестировать, как он снимает на разных режимах.
MiVue 688 умеет записывать видео в четырех разрешениях: Super HD с частотой 30 кадров в секунду, Full HD с частотой 45 или 30 кадров в секунду, и HD с частотой 60 кадров в секунду.

Больше всего мне понравился режим: 2304x1296p 30 fps.
Далее приложу скриншоты для сравнения:

Честно говоря, при дневном освещении нет особой разницы, в каком разрешении вести запись: в Super HD 30 fps, Full HD 45 fps или 30 fps HDR – картинка на выходе получается примерно одинаковая. От видеорегистратора же не требуется «художественного изображения». Надо лишь, чтобы разметка, состояние дорожного полотна, знаки и соседи по потоку вместе с номерами были видны отчетливо. Днем с этим нет проблем ни при съемке в Super HD, ни в Full HD. Детализация кадров хороша, и разглядеть можно даже номера тех машин, которые находятся через ряд от вашей.
Фото 4 режима 1280x720p 60 fps не буду выкладывать, т.к. не смотря на повышенную частоту кадров, этот режим мне совсем не понравился. По сравнению с первыми 3-мя режимами, картинка, конечно, плавнее, но заметно темнее, менее четкая и даже какая-то замыленная. Ощутимо теряются детали, номера попутных автомобилей читаются с затруднениями, что для регистратора очень критично. И это все при дневном свете!

Видео можно записывать отрезками по 1 мин, 3 мин и 5 мин. (выбирается в меню). Запись, естественно, идет непрерывно, без всяких пауз, остановок, рывков и пр.

Технические данные по видео для каждого из 3-х режимов:

Вместе с видеорегистратором идет удобное приложение для просмотру файлов MiVee Manager:

С его помощью можно быстро просмотреть записанные файлы и проанализировать их. Утилита отображает скорость движения автомобиля, координаты GPS, направление движения, высоту над уровнем моря, а также показывает перегрузки, которые испытывал гаджет во время движения. Местоположение автомобиля можно проследить и нанести на карты Google. В приложении доступна сортировка по датам и типам событий (G-сенсор, парковка, обычное видео), поддерживается быстрый экспорт видеозаписей на почту, в Facebook и YouTube.
Так же, благодаря наличию wi-fi — файл можно передать на любое устройство, способное принимать файлы подобным образом (что очень удобно в случае какого-нибудь спорного эпизода на дороге или ДТП).

Прибор можно настроить таким образом, что он не будет отображать на экране записываемое во время движения видео (чтобы не отвлекать водителя), а будет только показывать предупреждения о камерах, радарах, засадах, дистанцию до них и текущую скорость автомобиля. Кстати, информация по камерам и радарам регулярно обновляется на сайте производителя, и ее очень удобно заливать в него.

Пример записи в режиме 2304x1296p 30 fps:

Размер одного 5-ти мин. файла в таком разрешении составляет около 640 Мб. Этот видеорегистратор поддерживает карты памяти объемом до 128 ГБ. Я купил такую и не переживаю, что места для чего-нибудь не хватит.

Также отмечу, что прямо во время записи можно делать фотографии. Они сохраняются в том же разрешении, в котором идет съемка. Качество у них очень приличное – все равно что делать скриншоты прямо во время съемки.

Что означает D1, DCIF, 2CIF, CIF, QCIF, 380, 420, 480, 560, 600, 700, 800, 1000 ТВЛ, 960H, 720p, 960p,1080p, 2K, 4K таблица разрешений камер видеонаблюдения, объем жесткого диска для видеорегистратора и длительность записи

Цель этой статьи — устранить путаницу в обозначениях разрешающей способности камер видеонаблюдения и помочь понять какой объем памяти необходим для записи видео с тем или иным разрешением.

Обозначения качества изображения, применяющееся в стандартах сигналов (IP, HD-TVI, AHD)

Разрешающая способность («разрешение» записи или «размер кадра» видео) определяется количеством пикселей (точек) при оцифровывании изображения (по горизонтали и вертикали соответственно).

Обозначение «Mp, Mpx, Мп» (1 Mp; 1,3 Mpx; 2,1 Мп)

MP – это общее число мегапикселей (миллионов точек), полученное перемножением числа столбцов (точек по горизонтали) на число строк (точек по вертикали). Например, для камеры 1080p: 1920 столбцов умножаем на 1080 строк и получаем 2МР (точнее, 2.07МР, но обычно это обозначают как 2MP или 2.1MP).

Читайте также:  Как должен стоять вентилятор на процессоре

Обозначение «р» (720p, 960p,1080p, 2160p)

Число с символом «p» соответствует полному числу строк в данном видео (количество точек в кадре по вертикали). Например, видео, обозначаемое как 720p, содержит 720 строк пикселов (при общей площади 1.3Mp). Видео, обозначаемое как 1080p, содержит 1080 строк пикселов (при общей площади 2.1Mp). Наконец, видео, обозначаемое как 2160p, содержит 2160 строк пикселов (при общей площади 8.3Mp).

Сам по себе значок «р» указывает на прогрессивную развертку (в отличие от чересстрочной). В настоящее время практически все камеры для видеонаблюдения имеют прогрессивную развертку, так что значок «р» в этом смысле уже не играет особого значения.

Обозначения «H и К» (960H, 2K, 4K)

Обозначение «H и K» указывает на число столбцов (точек по горизонтали), выраженное H — в единицах, К — в тысячах и округленное. Например, видео с обозначение 4K содержит около 4000 столбцов пикселов. Реально видео «4К» содержит или 3840 столбцов, или 4096 столбцов, хотя в видеонаблюдении это почти всегда 3840.

Обозначения качества видео, применявшиеся в устаревших аналоговых системах видеонаблюдения (D1, DCIF, 2CIF, CIF, QCIF, 380ТВЛ, 420ТВЛ, 480ТВЛ, 560ТВЛ, 600ТВЛ, 800ТВЛ, 1000ТВЛ) перевод в мегапиксели и их отличия

ТВЛ (телевизионные линии) — это интересная единица измерения, определяемая по испытательным таблицам в ходе тестирования камер и обозначает количество вертикальных линий (видимых переходов яркости) в кадре. По сути — это количество пикселей по горизонтали кадра, помноженное на коэффициент 0,65 (чтобы учесть неизбежные потери четкости в процессе преобразования и обработки видеосигнала). Вертикальное же разрешение в пикселях жестко задано количеством строк в телевизионном стандарте (576 в европейском и 480 в американском) и не меняется в зависимости от разрешения камеры, заявленного производителем. Поэтому разрешения более 420 ТВЛ, передаваемые в обычном аналоговом телевизионном стандарте, можно назвать не совсем честными, так как они дают повышенную четкость только по горизонтали.

TVL (телевизионных линий) Пиксели (горизонталь x вертикаль) Мегапиксели (Мп, MPx)
380ТВЛ 640×480 px 0,3 Mp
420ТВЛ 720×576 px 0,36 Mp
честное 480ТВЛ 800×600 px 0,5 Mp
честное 560ТВЛ 933×700 px 0,65 Mp
честное 600ТВЛ 1024×756 px 0,75 Mp
честное 800ТВЛ 1280×960 px 1,23 Mp
честное 1000ТВЛ 1600х1200 px 1,92 Mp

D1 — «полный» кадр, размер изображения 704х576 — позволяет получить максимальное качество изображения при использовании аналоговой камеры высокого разрешения (более 540 ТВЛ)

DCIF — «расширенный» кадр, размер изображения 528х384. По сравнению с D1 характеризуется 30% потерей исходной информации.

2CIF — «длинный» кадр, размер изображения 704х288 — используется одно поле изображения, но с максимальным разрешением по горизонтали. Характеризуется хорошим горизонтальным разрешением и позволяет почти в 2 раза уменьшить объем создаваемого архива по сравнению с D1. Однако низкое вертикальное разрешение, не позволяет вести видеорегистрацию в узких зонах наблюдения (наблюдение вдоль коридора). Используется в основном при панорамном обзоре.

CIF — «четверть» кадр, размер изображения 352х288 — усеченное поле. Обычно используется только при наблюдении по сети при ограниченной пропускной способностью канала, а также регистрации общей ситуации при малых зонах обзора (от 3 до 5 м). При этом малый объем видеопотока позволяет резко увеличить продолжительность архива.

QCIF — размер изображения 176х144 — используется только при сетевом мониторинге по низкоскоростным каналам связи с потоком до 56-128 Кбит/с. О качестве изображения можно сказать только то, что «видно какое то движение», и более ничего.

Список всех (основных и промежуточных) форматов видеоизображений с указанием горизонтального и вертикального размера кадра в пикселях и полной площади изображения в килопикселях и мегапикселях

Название формата (стандарта) видео Количество отображаемых в кадре точек Пропорции изображения (соотношения сторон кадра) Размер изображения в килопикселях (тысячах пикселей) и мегапикселях (миллионах пикселей)
QVGA 320×240 4:3 76,8 кпикс
SIF (MPEG1 SIF) 352×240 22:15 84,48 кпикс
CIF (MPEG1 VideoCD) 352×288 11:9 101,37 кпикс
WQVGA 400×240 5:3 96 кпикс
[MPEG2 SV-CD] 480×576 5:6 276,48 кпикс
HVGA 640×240 8:3 153,6 кпикс
HVGA 320×480 2:3 153,6 кпикс
nHD 640×360 16:9 230,4 кпикс
VGA 640×480 4:3 307,2 кпикс
WVGA 800×480 5:3 384 кпикс
SVGA 800×600 4:3 480 кпикс
FWVGA 848×480 16:9 409,92 кпикс
qHD 960×540 16:9 518,4 кпикс
WSVGA 1024×600 128:75 614,4 кпикс
XGA 1024×768 4:3 786,432 кпикс
XGA+ 1152×864 4:3 995,3 кпикс
WXVGA 1200×600 2:1 720 кпикс
HD 720p 1280×720 16:9 921,6 кпикс
WXGA 1280×768 5:3 983,04 кпикс
SXGA 1280×1024 5:4 1,31 Мпикс
WXGA+ 1440×900 8:5 1,296 Мпикс
SXGA+ 1400×1050 4:3 1,47 Мпикс
XJXGA 1536×960 8:5 1,475 Мпикс
WSXGA (?) 1536×1024 3:2 1,57 Мпикс
WXGA++ 1600×900 16:9 1,44 Мпикс
WSXGA 1600×1024 25:16 1,64 Мпикс
UXGA 1600×1200 4:3 1,92 Мпикс
WSXGA+ 1680×1050 8:5 1,76 Мпикс
Full HD 1080p 1920×1080 16:9 2,07 Мпикс
WUXGA 1920×1200 8:5 2,3 Мпикс
2K 2048×1080 256:135 2,2 Мпикс
QWXGA 2048×1152 16:9 2,36 Мпикс
QXGA 2048×1536 4:3 3,15 Мпикс
WQXGA 2560×1440 16:9 3,68 Мпикс
WQXGA 2560×1600 8:5 4,09 Мпикс
QSXGA 2560×2048 5:4 5,24 Мпикс
WQXGA 3200×1800 16:9 5,76 Мпикс
WQSXGA 3200×2048 25:16 6,55 Мпикс
QUXGA 3200×2400 4:3 7,68 Мпикс
QHD 3440×1440 21:9 4.95 Мпикс
WQUXGA 3840×2400 8:5 9,2 Мпикс
Ultra HD 3840×2160 16:9 8,3 Мпикс
4K 4096×2160 256:135 8,8 Мпикс
4128×2322 16:9 9,6 Мпикс
4128×3096 4:3 12,78 Мпикс
HSXGA 5120×4096 5:4 20,97 Мпикс
WHSXGA 6400×4096 25:16 26,2 Мпикс
HUXGA 6400×4800 4:3 30,72 Мпикс
Super Hi-Vision 7680×4320 16:9 33,17 Мпикс
WHUXGA 7680×4800 8:5 36,86 Мпикс

Какого объема нужен жесткий диск для видеорегистратора?

Руководствуясь таблицей, приведенной ниже, можно посчитать сколько гигабайт в час будут передавать на видеорегистратор все камеры.

Таблица объема (Гб) часа записи камер видеонаблюдения для кодека H.264 при разрешении D1, 1Mp (1280*720), 2Mp (1920*1080), 3Mp(2048*1536), 5M(2560×1920) при частоте кадров 8, 12, 25 к/с и различной интенсивности движения.

Для уменьшения объема хранимой видеоинформации в видеорегистраторах применяются различные алгоритмы ее компрессии.

Основным преимуществом алгоритма H.264 является межкадровое сжатие, при котором для каждого следующего кадра определяются его отличия от предыдущего, и только эти отличия после компрессии сохраняются в архиве. При работе алгоритма периодически в архиве сохраняются опорные кадры (I-кадры), представляющие собой сжатое полное изображение, а затем на протяжении 25-100 кадров сохраняются только изменения, называемые промежуточными кадрами (P- и B-кадрами). Такой способ компрессии позволяет получить высокое качество изображения при малом объеме, но требует большего объема вычислений, чем компрессия в стандарте MJPEG.

При использовании алгоритма MJPEG компрессии подвергается каждый кадр не зависимо от наличия в нем отличий от предыдущего. Поэтому единственным способом уменьшения объема сохраняемых данных является увеличение компрессии и тем самым снижение качества записи. Такой способ используется только в простых автономных видеорегистраторах, не требующих длительного хранения информации.

Еще одним преимуществом алгоритма H.264 является его возможность работы в режиме постоянного потока (CBR — constant bit rate) при котором степень компрессии видеоинформации изменяется динамически и таким образом четко фиксируется объем создаваемого архива за одну секунду. Такая особенность алгоритма позволяет однозначно определить максимальный объем архива за час непрерывной работы системы, а также необходимый сетевой трафик при удаленном доступе.

Представитель на Юге России компания "Ставкомвидео+"

Ссылка на основную публикацию
Adblock detector